Current status of myocardial perfusion imaging radiopharmaceuticals for SPECT and PET imaging modalities

Authors

  • Fadimana Nur Aydinbelge Department of Nuclear Medicine, Ankara Training and Research Hospital, Ankara, Turkey
  • Murat Sadic Department of Nuclear Medicine, Ankara Training and Research Hospital, Ankara, Turkey
  • Meliha Korkmaz Department of Nuclear Medicine, Ankara Training and Research Hospital, Ankara, Turkey

DOI:

https://doi.org/10.18203/2320-6012.ijrms20164523

Keywords:

Myocardial perfusion imaging, PET, Radiopharmaceutical, SPECT

Abstract

Coronary artery disease (CAD) is the leading cause of death and remains a major health problem worldwide. Myocardial perfusion imaging (MPI) with single photon emission tomography (SPECT) and positron emission tomography (PET) has been established as the main functional nuclear cardiology noninvasive technique for CAD over the past years. The studies has been shown that the use of MPI as a useful and important imaging modality for the diagnosis, risk stratification and treatment planning for CAD. The purpose of this article is to review properties of the radiopharmaceuticals used for myocardial perfusion imaging with SPECT and PET.

References

Beller GA, Bergmann SR. Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol. 2004;11(1):71-86.

Hung GU. Diagnosing CAD: additional markers from myocardial perfusion SPECT. J Biomed Res. 2013;27(6):467-77.

Hung GU, Wang YF, Su HY, Hsieh TC, Ko CL, Yen RF. New Trends in Radionuclide Myocardial Perfusion Imaging. Acta Cardiol Sin. 2016;32(2):156-66.

Won KS, Song BI. Recent trends in nuclear cardiology practice. Chonnam Med J. 2013;49(2):55-64.

Ziessman HA, O’Malley JP, Thrall JH, Fahey FH eds. Cardiac System. Nuclear Medicine: The Requisites. 4th ed. Philadelphia, PA: Elsevier Saunders. 2014:378-423.

Gibbons RJ. Myocardial perfusion imaging. Heart 2000;83(3):355-60.

Lee WW. Recent Advances in Nuclear Cardiology. Nucl Med Mol Imaging. 2016;50(3):196-206.

Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015;42(12):1929-40.

Husain SS. Myocardial perfusion imaging protocols: is there an ideal protocol? J Nucl Med Technol. 2007;35(1):3-9.

Grunwald AM, Watson DD, Holzgrefe HH Jr, Irving JF, Beller GA. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation. 1981;64(3):610-8.

Pagnanelli RA, Basso DA. Myocardial perfusion imaging with 201Tl. J Nucl Med Technol. 2010;38(1):1-3.

Lin X, Zhang J, Wang X, Tang Z, Zhang X, Lu J. Development of radiolabeled compounds for myocardial perfusion imaging. Curr Pharm Des. 2012;18(8):1041-57.

Dahlberg ST. Assessment of myocardial perfusion with Tc-99m: image is everything. J Nucl Cardiol. 2009;16(4):493-6.

Leppo JA, DePuey EG, Johnson LL. A review of cardiac imaging with sestamibi and teboroxime. J Nucl Med. 1991;32(10):2012-22.

Zheng Y, Ji S, Tomaselli E, Ernest C, Freiji T, Liu S. Effect of co-ligands on chemical and biological properties of (99m)Tc(III) complexes (99m)Tc(L)(CDO)(CDOH)2BMe (L=Cl, F, SCN and N3; CDOH2=cyclohexanedione dioxime). Nucl Med Biol. 2014;41(10):813-24.

ES C, SS H. Nuclear Cardiac Imaging: Terminology and Technical Aspects. Radiology. 2004;233(2):566.

Fagret D, Ghezzi C, Vanzetto G. 99mTc-N-NOET imaging for myocardial perfusion: can it offer more than we already have? J Nucl Med. 2001;42(9):1395-6.

Riou L, Ghezzi C, Mouton O, Mathieu JP, Pasqualini R, Comet M, et al. Cellular uptake mechanisms of 99mTcN-NOET in cardiomyocytes from newborn rats: calcium channel interaction. Circulation. 1998;98(23):2591-7.

Fagret D, Marie PY, Brunotte F, Giganti M, Le Guludec D, Bertrand A, et al. Myocardial perfusion imaging with technetium-99m-Tc NOET: comparison with thallium-201 and coronary angiography. J Nucl Med. 1995;36(6):936-43.

Vanzetto G, Glover DK, Ruiz M, Calnon DA, Pasqualini R, Watson DD, et al. 99mTc-N-NOET myocardial uptake reflects myocardial blood flow and not viability in dogs with reperfused acute myocardial infarction. Circulation 2000;101(20):2424-30.

Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5(6):700-7.

Dilsizian V. SPECT and PET Myocardial perfusion imaging: tracers and techniques. In: Dilsizian V, Narula J, eds. Atlas of nuclear cardiology. 4th ed. New York, NY: Springer Science & Business Medi. 2013:55-93.

Lalonde L, Ziadi MC, Beanlands R. Cardiac positron emission tomography: current clinical practice. Cardiol Clin. 2009;27(2):237-55.

Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44(5):333-43.

Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med. 2005;35(1):17-36.

Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54(1):1-15.

Yoshinaga K, Klein R, Tamaki N. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging-From basic aspects to clinical applications. J Cardiol. 2010;55(2):163-73.

Rischpler C, Park MJ, Fung GS, Javadi M, Tsui BM, Higuchi T. Advances in PET myocardial perfusion imaging: F-18 labeled tracers. Ann Nucl Med. 2012;26(1):1-6.

Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med. 2007;48(6):1021-30.

Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, et al. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol. 2007;14(6):782-8.

Mahmarian JJ, Chang S, Nabi F. Nuclear cardiology: 2014 innovations and developments. Methodist Debakey Cardiovasc J. 2014;10(3):163-71.

Naya M, Tamaki N. Imaging of Myocardial Oxidative Metabolism in Heart Failure. Curr Cardiovasc Imaging Rep. 2014;7:9244.

Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76(3):687-96.

Sun KT, Yeatman LA, Buxton DB, Chen K, Johnson JA, Huang SC, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using 1-carbon-11acetate. J Nucl Med. 1998;39(2):272-80.

Green MA, Mathias CJ, Welch MJ, McGuire AH, Perry D, Fernandez-Rubio F, et al. Copper-62-labeled pyruvaldehyde bis (N4-methylthiosemicarbazonato) copper(II): synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J Nucl Med. 1990;31(12):1989-96.

Lacy JL, Haynes NG, Nayak N, Mathias CJ, Wallhaus TR, Stewart R, et al. PET Myocardial Perfusion Imaging with Generator Produced Radiopharmaceuticals. 62Cu-PTSM and 62Cu-ETS. Clin Positron Imaging. 1999;2(6):317.

Plossl K, Chandra R, Qu W, Lieberman BP, Kung MP, Zhou R, et al. A novel gallium bisaminothiolate complex as a myocardial perfusion imaging agent. Nucl Med Biol 2008;35(1):83-90.

Downloads

Published

2016-12-19

How to Cite

Aydinbelge, F. N., Sadic, M., & Korkmaz, M. (2016). Current status of myocardial perfusion imaging radiopharmaceuticals for SPECT and PET imaging modalities. International Journal of Research in Medical Sciences, 5(1), 1–7. https://doi.org/10.18203/2320-6012.ijrms20164523

Issue

Section

Review Articles