Research Article

Prevalence of pre-hypertension and its relationship with body mass index among the medical students of Agartala government medical college

Aghore Debbarma ${ }^{1}$, Himadri Bhattacharjya ${ }^{2 *}$, Arpita Mohanty ${ }^{3}$, Chanda Mog ${ }^{2}$
${ }^{1}$ Department of Physiology, Agartala Government Medical College, Kunjavan-799006, Agartala, Tripura, India
${ }^{2}$ Department of Community Medicine, Agartala Government Medical College, Kunjavan-799006, Agartala, Tripura, India
${ }^{3} 3^{\text {rd }}$ Professional MBBS Student, Agartala Government Medical College, Kunjavan-799006, Agartala, Tripura, India

Received: 05 March 2015
Accepted: 03 April 2015

*Correspondence:

Dr. Himadri Bhattacharjya,
E-mail: hbhattacharjya@rediffmail.com
Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Body Mass Index (BMI) is found to be positively co-related with the increased prevalence of elevated blood pressure among younger individuals. The present study was designed to find out the prevalence of prehypertension and its relationship with BMI among the medical students. Methods: A cross-sectional study was conducted during June - July 2013 among 306 medical students of Agartala government medical college, chosen by stratified random sampling. Results: Prevalence of pre-hypertension, hypertension and optimum BP were found to be $45 \%, 4 \%$ and 51% respectively. Mean BMI was found to be $21.68 \pm 3.55,80 \%$ of the students had ideal waist hip ratio, 19% were underweight, 61% had normal weight, 18% were overweight, and 2% were found to be obese. Pre-hypertension was significantly more prevalent among the senior medical students ($\chi^{2}=4.933, \mathrm{P}=0.026$), males ($\chi^{2}=10.826, \mathrm{P}=0.001$) and those who had family history of hypertension $\left(\chi^{2}=4.228, \mathrm{P}=0.039\right)$. Pre-hypertension was significantly higher among the obese medical students $\left(\chi^{2}=6.941, \mathrm{P}=0.008\right)$. Logistic regression analysis revealed that medical students had 12.8% more chance of having pre-hypertension with one unit increase in their BMI. Conclusion: Prevalence of pre-hypertension among medical students is high and BMI is found to be significantly associated with pre-hypertension. Hence it can be used as an effective tool for predicting pre-hypertension and development of hypertension among medicos later on.

Keywords: Pre-hypertension, Hypertension, Body mass index, Medical student

INTRODUCTION

According to reports from the World Health Organization, chronic non-communicable diseases are the leading causes of death worldwide. ${ }^{1}$ Hypertension (HT) alone caused more than 7 million deaths worldwide in $2010{ }^{2,3}$ Hence it has become a serious health problem everywhere, not only because of its prevalence, affecting up to one third of world population, ${ }^{1}$ but as a risk factor directly related to diseases in other systems that may lead
to ischemic heart disease, heart failure, cerebrovascular disease and chronic renal failure, among others. ${ }^{3-5}$ The seventh joint national committee on prevention, detection, evaluation, and treatment of high Blood Pressure (BP) has Introduced Pre-Hypertension (PHT) as a new category of BP, where systolic BP lies between 120 and 139 mmHg and or diastolic BP between 80 and $89 \mathrm{mmHg} .{ }^{6}$ Body Mass Index (BMI) was found to be positively related to the increased prevalence of elevated blood pressure among younger individuals aged 18-44
years. The association of BMI with pre-hypertension and hypertension depends up on age and sex. ${ }^{7}$

Though pre-hypertension has a strong familial predisposition, the patho-physiological mechanisms that cause its progression have not yet been fully elucidated. ${ }^{8}$

Additionally, it has been observed that the risk of developing coronary or cerebrovascular syndrome is double in patients with a systolic blood pressure of 135 mmHg compared to those with 115 mmHg . That is why it is necessary to identify those people with these levels of BP, which were previously considered to be normal, but have proven to have future implications. ${ }^{5,8,9}$

Prevalence of pre-hypertension among adults in the United States was approximately 31% and higher among men (39\%) than women (23%). Prevalence of prehypertension and hypertension were significantly greater in South and West India as compared to Northern and Eastern India. ${ }^{10}$

The study of young adults in search of factors associated with pre-hypertension allows early detection and gives the possibility of implementing early preventive actions. Sufficient data regarding blood pressure of young adults of North Eastern region are not available. Hence the present study was designed to find out the prevalence of pre-hypertension and its relationship with BMI among the medical students of Agartala government medical college.

METHODS

This cross-sectional study was conducted among medical students of Agartala government medical college during June - July 2013. Minimum sample size requirement for this study at 95% confidence was calculated to be 319 considering the prevalence of pre-hypertension among medical students of India as $58 \%^{11}$ and margin of error and incomplete response rate as 10% each.

During data collection 2 students denied to participate in the study and 11 were out of station, thus total 13 students met exclusion criteria and final sample size came down to 306 giving a response rate of 95.92%. Stratified random sampling technique was followed to choose the study subjects. A pre-tested and validated structured questionnaire, mercury sphygmomanometer, electronic bathroom weighing scale, a non-stretchable measuring tape having lowest measuring capacity up to 0.1 cm and a wall mounted stature meter were used as study tools. Data were collected by the self-administered questionnaire, which contained questions regarding age, sex, ethnicity, family income, dietary habit, medication, smoking and drinking habits, salt and oil intake, physical exercise, family history of hypertension etc. and space for entering the values of body parameters. After obtaining informed verbal consent, the students were asked to fill in the questionnaire themselves confidentially without
consulting each other in specially arranged class room sessions providing equal time for each session, which was followed by measurement of blood pressure, height, weight, hip circumference, waist circumference etc. of the participants and recording in the respective questionnaire. Measurement of blood pressure, height, weight, waist and hip circumference etc. and calibration of the measuring instruments were performed as per the techniques adopted from WHO MONICA study. ${ }^{12}$

Waist-Hip Ratio (WHR) of ≤ 1 was considered as normal and WHR >1 was considered as high. The study participants were categorized as 'under-weight', 'normalweight', 'over-weight' or 'obese' according to the guidelines adopted from WHO Technical Report Series $854 .{ }^{13}$

Hypertension, pre-hypertension and optimum BP were defined as per JNC-VII classification. ${ }^{14}$

Data entry and analysis were performed in computer using SPSS 15 version. ${ }^{15}$

Descriptive statistics, chi-square test, student - t test, binary logistic regression etc. were used for presenting data and testing the significance and $\mathrm{P} \leq 0.05$ was considered as statistically significant. This study was approved by the institutional ethics committee of Agartala government medical college and also obtained 'Short term studentship award' during 2013 from the Indian Council of Medical Research.

RESULTS

Prevalence of pre-hypertension, hypertension and optimum BP among the medical students of Agartala government medical college was found to be $45 \%, 4 \%$ and 51% respectively.

Among the study subjects, 48% were male and 70% had the family history of hypertension. Regarding community, 23% belonged to scheduled caste, 32% to scheduled tribe and the rest to general community. Among the participants, 19% were underweight, 61% had normal weight, 18% were overweight, and 2% were found to be obese. Ideal WHR was observed among 80% of the students.

Non-vegetarians constituted $92 \%, 23 \%$ were regular consumers of extra salt and only 3% of the study subjects were performing regular physical exercise for remaining healthy. About 5% of the study subjects were occasional smokers and 7% used to consume alcohol occasionally.

Mean \pm SD BMI of the study subjects was found to be 21.68 ± 3.55 and gender wise it was 21.79 ± 3.40) and 21.58 ± 3.70) among the male and female students respectively.

Table 1: Prevalence of pre-hypertension by age, sex, community and family history of hypertension.

Variables	Subgroups	Pre-hypertensive Number (\%)	Not Pre-hypertensive Number (\%)	Significance
Age	18 year to <20 year	49 (40.0)	73 (60.0)	$\begin{aligned} & \chi^{2}=4.933 \\ & \mathrm{P}=0.026 \end{aligned}$
	20 year and above	99 (53.80)	85 (46.20)	
Sex	Male	85 (58.0)	62 (42.0)	$\begin{aligned} & \chi^{2}=10.826 \\ & \mathrm{P}=0.001 \end{aligned}$
	Female	61 (38.0)	98 (62.0)	
Community	Scheduled caste	32 (46.0)	38 (54.0)	$\begin{aligned} & \chi^{2}=0.507 \\ & \mathrm{P}=0.776 \end{aligned}$
	Scheduled tribe	44 (45.0)	54 (55.0)	
Family history	General community	68 (49.0)	70 (51.0)	$\begin{aligned} & \chi^{2}=4.228 \\ & \mathrm{P}=0.039 \end{aligned}$
	Present	126 (60.28)	83 (39.72)	

It shows that pre-hypertension was significantly more prevalent among the senior medical students ($\chi^{2}=4.933, \mathrm{P}$ $=0.026$), males ($\chi^{2}=10.826, \mathrm{P}=0.001$) and those who had family history of hypertension $\left(\chi^{2}=4.228, \mathrm{P}=0.039\right)$.

Table 2: Prevalence of pre-hypertension by BMI and WHR.

Variables	Subgroups	Pre-hypertensive Number (\%)	Not Pre-hypertensive Number (\%)	Significance

It shows that prevalence of pre-hypertension was significantly higher among the obese medical students $\left(\chi^{2}=6.941, P=0.008\right)$ and those with higher waist hip ratio $\left(\chi^{2}=4.983, P=0.025\right)$.

Table 3: Prevalence of pre-hypertension by mean BP and BMI.

Variables	Subgroups	Mean \pm SD	Significance
Systolic BP (mm Hg)	18 year to <20 year	126 ± 6.20	$\begin{aligned} & \mathrm{t}=3.332 \\ & \mathrm{P}=0.001 \end{aligned}$
	20 year and above	128 ± 4.30	
Diastolic BP (mm Hg)	18 year to <20 year	60 ± 2.36	$\begin{aligned} & \mathrm{t}=9.563 \\ & \mathrm{P}=0.000 \end{aligned}$
	20 year and above	64 ± 4.20	
Systolic BP (mm Hg)	Male	124 ± 4.08	$\begin{aligned} & \mathrm{t}=16.419 \\ & \mathrm{P}=0.000 \end{aligned}$
	Female	118 ± 2.06	
Diastolic BP (mm Hg)	Male	66 ± 4.07	$\begin{aligned} & \mathrm{t}=15.955 \\ & \mathrm{P}=0.000 \end{aligned}$
	Female	60 ± 2.34	
BMI	18 year to <20 year	20.64 ± 2.05	$\begin{aligned} & \mathrm{t}=2.588 \\ & \mathrm{P}=0.010 \end{aligned}$
	20 year and above	21.39 ± 2.73	
	Male	21.79 ± 3.40	$\mathrm{t}=0.516$
	Female	21.58 ± 3.70	$\mathrm{P}=0.606$

It shows that mean systolic and diastolic BP differed significantly between the junior and senior medical students ($\mathrm{t}=3.332, \mathrm{P}=0.001$ and $\mathrm{t}=9.563, \mathrm{P}=0.000$ respectively) and their $\operatorname{sex}(t=16.419, P=0.000$ and $t=15.955, P=0.000)$ whereas mean BMI was significantly different among the junior and senior medical students only.

Table 4: Binary logistic regression analysis.

	Odds ratio (95\% CI)	P value	
Continuous variables			
Age	$1.037(1.028-1.053)$	0.000	
BMI	$1.128(1.047-1.218)$	0.001	
Waist hip ratio	$13.158(0.398-$ $457.831)$	0.131	
Discrete variables			
Gender	Male	$1.238(0.698-2.981)$	0.389
	Female	1	0.897
Family history of hypertension	Present	Absent	1

Binary logistic regression analysis shows that medical students had 3.7% higher chance of having pre-hypertension with one year increment of age $(\mathrm{OR}=1.037,95 \% \mathrm{CI}=1.028-1.053, \mathrm{P}=$ 0.000). Likewise they had 12.8% more chance of having prehypertension with one unit increase in their $\mathrm{BMI}(\mathrm{OR}=1.128$, $95 \% \mathrm{CI}=1.047-1.218, \mathrm{P}=0.001$) while rest of the variables did not attain the level of statistical significance.

DISCUSSION

Present study detected the prevalence of pre-hypertension to be 45%, similarly Mohit Shahi et al., 2013^{16} and Mona Soliman et al., 2014^{17} also found it to be 40.2% and 47.4% respectively. But Abdul-Hussein F. et al., 2011^{18} and Samuel I. Merino Barrera et al. $2014{ }^{19}$ found it to be 31.8% and 27.6% respectively.

Lower prevalence in these two studies may be attributable to ecological and racial differences among the studies. This study detected the prevalence of prehypertension as 38% among female medicos, whereas Mohit Shahi et al., 2013^{16} and Kavita Chaudhry et al., 2012^{11} found it to be 46.9% and 58% respectively, which were higher than our study. But Abdul-Hussein F. et al., 2011^{18} and M. R. Koura et al., 2012^{20} found it to be 13.1% and 13.5% respectively, which were lower than the present study. These differences may be due to the racial differences of the study subjects. In this study mean BMI of the study subjects was found to be 21.68 ± 3.55, Kavita Chaudhry et al., 2012^{11} found it to be 22.33 ± 3.83 and Sreedharan J et al., 2010^{21} found it to be 24.9 ± 5.7, which were similar. Mean BMI of the male and female subjects was found to be 21.79 ± 3.40 and 21.58 ± 3.70 respectively in this study whereas Ujunwa et al., 2013^{22} found it to be 19.81 ± 3.61 and 21.16 ± 3.29 respectively, which were similar. WHR was found to be within normal range among 80% of the study subjects and this was similar with the findings of Ujunwa et al., 2013. ${ }^{22}$

Age, sex and BMI were found to be the significant predictors of pre-hypertension among the study subjects, which was similar with the findings of Kavita Chaudhry et al., 2012, ${ }^{11}$ Mona Soliman et al., $2014{ }^{17}$ and Samuel I. Merino Barrera et al. 2014. ${ }^{19}$

CONCLUSION

This study concluded that the prevalence of prehypertension among medical students is high and high BMI was found to be significantly associated with prehypertension. Hence it can be used as an effective tool for predicting pre-hypertension and development of hypertension among medicos later on. It may prompt Public Health stakeholders for timely primary interventions against developing hypertension in them.

ACKNOWLEDGEMENTS

Authors are grateful to Indian Council of Medical Research for granting 'Short term studentship award 2013' for this study.

Funding: No funding sources

Conflict of interest: None declared
Ethical approval: The study was approved by the institutional ethics committee Agartala government medical college

REFERENCES

1. World Health Organization. Global status report on non-communicable diseases 2010. In: WHO, eds. WHO Report. Geneva: World Health Organization; 2011.
2. Alwan A, Maclean DR, Riley LM, d'Espaignet ET, Mathers CD, Stevens GA, et al. Monitoring surveillance of chronic non-communicable diseases: progress and capacity in high-burden countries. Lancet. 2010;376(9755):1861-8.
3. Kaplan NM, Opie LH. Controversies in hypertension. Lancet. 2006;367(9505):168-76.
4. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, et al. National, regional, and global trends in systolic blood pressure since 1980: Systematic analysis of health examination surveys and epidemiological studies with 786 country-years and $5 \cdot 4$ million participants. Lancet. 2011;377(9765):568-77.
5. Ostchega Y, Yoon SS, Hughes J, Louis T. Hypertension awareness, treatment, and control continued disparities in adults: United States, 2005 2006. NCHS Data Brief. 2008;(3):1-8.
6. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42(6):1206-52.
7. Deng WW, Wang J, Liu MM, Wang D, Zhao Y, Liu YQ, et al. Body mass index compared with abdominal obesity indicators in relation to prehypertension and hypertension in adults: the CHPSNE Study. Am J Hypertens. 2013;26:58-67.
8. Gopal Krushna Pal, Adithan Chandrasekaran, Ananthanarayanan Palghat Hariharan, Tarun Kumar Dutta, Pravati Pal, Nivedita Nanda, et al. Increased
vascular tone due to sympathovagal imbalance in normotensive and pre-hypertensive offspring of hypertensive parents. BMC Cardiovasc Disord. 2012;19:12-54.
9. Ganguly SS, Al-Shafaee MA, Bhargava K, Duttagupta KK. Prevalence of pre-hypertension and associated cardiovascular risk profiles among prediabetic Omani adults. BMC Public Health. 2008;8:108.
10. Singh RB, Fedacko J, Pella D, Macejova Z, Ghosh S, de Amit K, et al. Prevalence and risk factors for pre-hypertension and hypertension in five Indian cities. Acta Cardiol. 2011;66(1):29-37.
11. Kavita Chaudhry, Sanjay Kumar Diwan, S. N. Mahajan. Pre-hypertension in young females, where do they stand? Indian Heart J. 2012;6403:280-3.
12. Tunstall-Pedoe H, Kuulasmaa K, Tolonen H, Davidson M, Mendis S, WHO, et al. The WHO MONICA project. In: Tunstall-Pedoe H, eds. MONICA Monograph and Multimedia Sourcebook. Geneva: World Health Organization; 2003.
13. WHO. Physical status: the use and interpretation of anthropometry. In: WHO, eds. Report of a WHO Expert Committee. WHO Technical Report Series 854. Geneva: World Health Organization; 1995.
14. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure; national heart, lung, and blood institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment. U.S. Department of Health and Human Services. NIH Publication No. 04-5230, August 2004. Available at: http://www.nhlbi.nih.gov.
15. SPSS Inc. SPSS for Windows, version 15.0, Chicago, 2006. Available at: http://spss-for-
windows-evaluation.software.informer.com/
Accessed 20 April 2013.
16. Mohit Shahi, Chow Wen Li. Pre-hypertension and its correlation with cardiovascular risk factors: a study among health sciences students in Malaysia. J Integrat Health Sci. 2013;1(2):104-9.
17. Mona Soliman, Omaima El-Salamony, Khalid ElKhashab, Naglaa A. El-Sherbiny, Safaa Khamis. Study of hypertension among Fayoum University students. Int J Public Health Res. 2014;2(2):15-9.
18. Abdul-Hussein F, Ghadhban, Omran S. Habib. A study on the distribution of blood pressure measurements among university students. Med J Basrah Univ. 2011;29(1\&2):43-50.
19. Samuel I. Merino Barrera. Guillermo A, Pérez Fernández, Merlin Garí Llanes, Vielka González Ferrer, Beyda González Camacho, Francisco L. Moreno-Martínez, et al. Factors associated with prehypertension in young adults between 20 and 25 years of age. Cor Salud. 2014;6(1):25-35.
20. Koura MR, Al-Dabal BK, Rasheed P, Al-Sowielem LS, Makki SM. Prehypertension among young adult females in Dammam, Saudi Arabia. East Mediterr Health J. 2012;18(7):728-34.
21. Sreedharan J, Mathew E, Muttappallymyalil J, Sharbatii SA, Shaikh RB, Basha SA. Determinants of blood pressure among youth in Ajman, UAE. Nepal J Epidemiol. 2010;1(1):17-21.
22. Fortune A. Ujunwa, Anthony N. Ikefuna, Ada RC. Nwokocha, Josephat M. Chinawa. Hypertension and pre-hypertension among adolescents in secondary schools in Enugu, South East Nigeria. Ital J Pediatr. 2013;39(70):2-6.

DOI: 10.5455/2320-6012.ijrms20150513
Cite this article as: Debbarma A, Bhattacharjya H, Mohanty A, Mog C. Prevalence of pre-hypertension and its relationship with body mass index among the medical students of Agartala government medical college. Int J Res Med Sci 2015;3:1097-101.

