Characteristics tests of cerebrospinal fluid cytology, chemistry and bacteriology in invasive paediatric bacterial meningitis in Madagascar

Authors

  • Lalaina V. Rahajamanana Department of Paediatrics, Mother and Child Teaching Hospital, Antananarivo, Madagascar
  • Dera S. Andriatahiana Department of Biology, Faculty of Medicine, Antananarivo, Madagascar
  • Paulin Andrianjakasolo Department of Biology, Faculty of Medicine, Antananarivo, Madagascar
  • Liliane J. Raboba Department of Paediatrics, Mother and Child Teaching Hospital, Antananarivo, Madagascar
  • Andry N. Ratovohery Department of Technology and Information, Faculty of Medicine, Antananarivo, Madagascar
  • Andry Rasamindrakotroka Department of Biology, Faculty of Medicine, Antananarivo, Madagascar

DOI:

https://doi.org/10.18203/2320-6012.ijrms20221328

Keywords:

CSF, Laboratory, H. influenzae, N. meningitidis, Paediatric, S. pneumoniae

Abstract

Background: Paediatric bacterial meningitis is a major public health problem. CSF laboratory analysis is the key element to confirm the disease but remains difficult to access by clinicians or patients in low-resource settings. We described CSF biological tests results in invasive paediatric bacterial meningitis at the University Hospital Mother and Child of Tsaralalàna (CHUMET) in Madagascar.

Methods: In this retrospective and descriptive study from January 2013 to December 2018, all CSF samples that were confirmed for bacterial meningitis by triplex PCR Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis were enrolled. CSF collected from eligible children were tested by microscopy, culture, soluble antigen at CHUMET laboratory. Residual CSF was referred to the regional reference laboratory (RRL) for real-time polymerase chain reaction (RT-PCR) confirmatory testing and serotyping.

Results: Over the 6-year study period, 2286 CSF were tested by PCR, 141 (6.1%) were positive. The age group of (1-12 months) was the most affected (68.0%). The majority of CSF were cloudy with pleiocytosis >100/mm3. Hyperproteinorrhea >1 g/l was noted in 48.2% of cases. The sensitivity of gram stain was respectively 56.6% and 75% for Pneumococcus and Meningococcus detection while for culture it was 28.3% and 66.6%, respectively. The average white cell count was notably higher in meningococcal meningitis and changed significantly according to the pathogens identified (p=0.007).

Conclusions: Paediatric bacterial meningitis diagnosis are based on CSF laboratory testing. Accessibility to multiplex PCR point-of-care tests targeting meningitis pathogens should be made easier for laboratories in low-income countries to improve patient care, monitor pathogen trends and vaccine impact program.

.

Author Biography

Lalaina V. Rahajamanana, Department of Paediatrics, Mother and Child Teaching Hospital, Antananarivo, Madagascar

Department of pediatrics, Mother and Child Tsaralalana Antananarivo
Department of Biology, Faculty of Medicine Antananarivo

References

Bosdure E. Méningites bactériennes de l’enfant et complications. 3èmeéditions. Neurologie Pédiatrique. 2010: 403-417.

Djeungoue SJ. Epidemiology of bacterial meningitis. Pédiatrie. 2008:87.

World Health Organization. Pneumococcal conjugate vaccine for childhood immunization-WHO position paper. Week Epidemiolog Record. 2007;82(‎12)‎:93-104.

World Health Organization. (‎2018)‎. Surveillance standards for vaccine-preventable diseases, 2nd ed. World Health Organization. Available at: https://apps.who.int/iris/handle/10665/275754. Accessed on 12 May 2022.

WHO. Fact sheet: Surveillance de la méningite épidémique dans la ceinture africaine, 2014. Available at: https://apps.who.int/iris/bitstream/ handle/10665/135936/WHO_HSE_PED_CED_14.1_fre.pdf?sequence=1. Accessed on 1 April 2022.

Mioramalala SA, Razafindratovo RMR, Rakotozanany A, Raharizo M, Weldegebriel G, Mwenda, et al. Analysis of death and survival factors associated withchildhood bacterial meningitis at a reference pediatric hospital in Antananarivo, Madagascar. Immunol Sci. 2018;2:8-14.

Wang X, Theodore MJ, Mair R, Trujillo-Lopez E, Plessis MD, Wolter N, et al. Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens. J Clin Microbiol. 2012;50(3):702-8.

Dao S, Goita D, Oumar A, Diarra S, Traore S, Bougoudogo F. Epidemiological aspects of purulent meningitis in Mali. Black Afr Med. 2008;55(10):515-8.

Lewagalu V, Tikoduadua L, Azzopardi K, Seduadua A., Temple B, Richmond P, et al. Meningitis in children in Fiji: etiology, epidemiology, and neurological sequelae.Int J Infect Dis. 2012;16(4):289-95.

Diarra F. Prognostic factors and future of children with bacterial meningitis in the department of pediatrics of the CHU Gabriel Touré from 2009-2010. Pédiatrie. 2012:98.

Rafaravavy NE. Aspectsépidémio-cliniques et bactériologiques de la méningite de l’enfant hospitalisé à l’HUMET. Pédiatrie. 2012:40.

Carbonnelle E. Contribution of biological examinations in the positive diagnosis, the determination of the etiology and the follow-up of suspected bacterial meningitisLaboratory diagnosis of bacterial meningitis: Usefulness of various tests for the determination of the etiological agent. Med Infect Med. 2009;39(7-8):581-605.

Zimmermann P, Curtis N. Bacterial meningitis in the absence of pleocytosis in children. Pediatr Infect Dis J. 2021;40(6):582-7.

Meghraoui Y. Les méningites bactériennes au service de pédiatrie du CHU Mohammed VI. Pédiatrie. 2018:91.

Carlyse DS. Epidémiologie des méningites à l’hôpital mère-enfants Marrakech. Pédiatrie. 2013:197.

Neuman M, Tolford S, Harpe MB. Test characteristics and interpretation of cerebrospinal fluid Gram stain in children. Pediatr Infect Dis. 2008;27(4):309-13.

Alonso JM, Taha MK. Respiratory virosis and invasive bacterial super infections: the case for influenzae and meningococcal diseases. Arch Pediatr. 2003;10(11):1013-5.

Shahan B, Choi E. Cerebrospinal Fluid Analysis. Am Fam Physician. 2021;103(7):422-8.

Malki M. Purulent meningitis in infants and children (about 49 cases). Pédiatrie. 2008:187.

Bouskraoui M, Bourrous M, Azher A. Les méningites purulentes de l’enfant: Epidémiologie, diagnostic, traitementet prévention. L’Antibiothérapie en pédiatrie. 2010.

Roine I, Foncea LM, Ledermann W, Peltola H. Slow recovery of cerebrospinal fluid glucose and protein concentrations distinguish pneumococcal from Haemophilus influenzae and meningococcal meningitis in children. Pediatr Infect Dis J. 1995;14(10):905-7.

Cavallo JD, Nicolas P, Martet G. Actualités sur la sensibilité de Neisseria meningitidis aux antibiotiques et en particulier aux bêtalactamines. La Lettre de l’Infectiologue. 1998;9:429-33.

Somipev. Recommandations pratiques pour la prise en charge des méningites bactériennes aiguës de l’enfant au Maroc. SOMIPEV; 2014. Available at: https://somipev.ma/fr/component/edocman/recommandations-pratiques-pour-la-prise-en-charge-des-m %C3%A9ningites-bact%C3%A9riennes-aigu% C3%ABs-de-l%E2%80%99enfant-au-maroc.html. Accessed on 1 April 2022.

Downloads

Published

2022-05-27

How to Cite

Rahajamanana, L. V., Andriatahiana, D. S., Andrianjakasolo, P., Raboba, L. J., Ratovohery, A. N., & Rasamindrakotroka, A. (2022). Characteristics tests of cerebrospinal fluid cytology, chemistry and bacteriology in invasive paediatric bacterial meningitis in Madagascar. International Journal of Research in Medical Sciences, 10(6), 1205–1210. https://doi.org/10.18203/2320-6012.ijrms20221328

Issue

Section

Original Research Articles