Routine laboratory diagnosis of chromosome aberrations in multiple myeloma

Yuet-Meng Chin, Zubaidah Zakaria


Multiple Myeloma (MM) is a Plasma Cell (PC) malignancy characterized by proliferation of differentiated B cells mainly in the bone marrow. Genetic abnormalities are powerful prognostic factors in MM for risk stratification and therapeutic strategies. The standard diagnostic tests to detect genetic abnormalities in MM include Conventional Cytogenetic Analysis (CCA) and Interphase Fluorescence In Situ Hybridization (FISH). Due to the low proliferative activity of the abnormal clone, only 30-50% of newly diagnosed MM demonstrate an abnormal karyotype by CCA. CCA is a biological test which requires dividing cells for analysis. The t(4;14) translocation which carries a poor prognosis is cryptic and cannot be detected by CCA. These limitations were overcome partly by the incorporation of interphase FISH as a routine diagnostic test in MM. There is an international consensus that FISH should be performed in all newly diagnosed MM to detect high-risk genetic abnormalities. FISH testing must be done on purified PCs or by simultaneous labeling of cytoplasmic immunoglobulin light chain to allow identification of PCs. The minimum essential abnormalities to test for are t(4;14), t(14;16) and del(17)(p13). However, there is no consensus on the optimal protocol for CCA and interphase FISH. We review here the types of chromosomal aberrations found in MM, the prognostic significance of these abnormalities,  methodologies in CCA to improve on the low yield of  abnormal karyotypes,  and protocols in interphase FISH.


Multiple myeloma, Chromosome abnormalities, Prognosis, Conventional cytogenetic analysis, FISH analysis

Full Text:



Ferlay J, Shin HR, Bray F, Forman D, Mathrs C, Parkin DM. Estimates of worldwide burden of cancer 2008: Globocan 2008. Int J Cancer. 2010;127:2893-917.

Huang SY, Yao M, Tang JL, Lee WC, Tsay W, Cheng AL, et al. Epidemiology of multiple myeloma in Taiwan: increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer. 2007;110:896-905.

Lee JH, Lee DS, Lee JJ, Chang YH, Jin JY, Jo DY, et al. Multiple myeloma in Korea: past, present, and future perspectives. Experience of the Korean multiple myeloma working party. Int J Hematol. 2010;92:52-7.

Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23:3-9.

Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Bladé J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412-20.

Lai JL, Zandecki M, Mary JY, Bernardi F, Izydorczyk V, Flactif M, et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood. 1995;85:2490-7.

Smadja NV, Louvet C, Isnard F, Dutel JL, Grange MJ, Varette C, et al. Cytogenetic study in multiple myeloma at diagnosis: comparison of two techniques. Br J Hematol. 1995;90:619-24.

Nahi H, Sutlu T, Jansson M, Alici E, Gahrton G. Clinical impact of chromosomal aberrations in multiple myeloma. J Intern Med. 2010;269:137-47.

Gole L, Lin A, Chua C, Chng WJ. Modified clg-FISH protocol for multiple myeloma in routine cytogenetic laboratory practice. Cancer Genetics. 2014;207:31-4.

Kim K, Lee JH, Kim JS, Min CK, Yoon SS, Shimizu K, et al. Clinical profiles of multiple myeloma in Asia: an Asian myeloma network study. Am J Hematol. 2014;89:751-6.

Avet-Loiseau H, Brigaudeau C, Morineau N, Talmant P, Lai JL, Daviet A, et al. High incidence of cryptic translocations involving the Ig heavy chain gene in multiple myeloma, as shown by fluorescence in situ hybridization. Genes Chromosomes Cancer. 1999;24:9-15.

Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel L, Chesi M, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546-58.

Dewald GW, Therneau T, Larson D, Lee YK, Fink S, Smoley S, et al. Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. Blood. 2005;106:3553-8.

Kapoor P, Fonseca R, Rajkumar SV, Sinha S, Gertz MA, Stewart AK, et al. Evidence for cytogenetic and fluorescence in situ hybridization risk stratification of newly diagnosed multiple myeloma in the era of novel therapies. Mayo Clin Proc. 2010;85:532-7.

Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK, et al. International myeloma working group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23:2210-21.

Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genetics. 2011;204:3-12.

Fonseca R, Debes-Marun C, Picken E, Dewald G, Bryant S, Winkler J, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant myeloma. Blood. 2003;102:2562-7.

Smadja NV, Leroux D, Soulier J, Dumont S, Arnould C, Taviaux S, et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer. 2003;38:234-9.

Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C, Groupe Français de Cytogénétique Hématologique. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98:2229-38.

Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene. 2001;20:5611-22.

Kalff A, Spencer A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer J. 2012;2:e89.

Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulate both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998;92:3025-34.

Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J Jr. A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood. 2003;101:2374-6.

Karlin L, Soulier J, Chandesris O, Choquet S, Belhadj K, Macro N, et al. Clinical and biological features of t(4;14) multiple myeloma: a prospective study. Leuk Lymph. 2011;52:238-46.

Gabrea A, Martelli ML, Qi Y, Roschke A, Barlogie B, Shaughnessy JD Jr, et al. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chromosomes Cancer. 2008;47:573-90.

Turkmen S, Binder A, Gerlach A, Niehage S, Theodora Melissari M, Inandiklioglu N, et al. High prevalence of immunoglobulin light chain gene aberrations as revealed by FISH in multiple myeloma and MGUS. Genes Chromosomes Cancer. 2014;53:650-6.

Fonseca R, Oken MM, Harrington D, Bailey RJ, Van Wier SA, Henderson KJ, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia. 2001;15:981-6.

Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489-95.

Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28:269-77.

Wu KL, Beverloo B, Lokhorst HM, Segeren CM, van der Holt B, Steijaert MM, et al. Abnormalities of chromosome 1p/1q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor of the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Hematol. 2007;136:615-23.

Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108:1724-32.

Sonneveld P, Schmidt-Wolf IG, van der Holt B, El Jarari L, Bertsch U, Salwender H, et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/GMMG-HD4 trial. J Clin Oncol. 2012;30:2946-55.

Dewald GW, Kyle RA, Hicks GA, Greipp PR. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood. 1985;66:380-90.

Zhan F, Sawyer J, Tricot G. The role of cytogenetics in myeloma. Leukemia. 2006;20:1484-6.

Rajkumar SV, Fonseca R, Dewald GW, Therneau TM, Lacy MQ, Kyle RA, et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet. 1999;113:73-7.

Tricot G, Barlogie B, Van Rhee F. Treatment advances in multiple myeloma. Br J Hematol. 2004;125:24-30.

Campbell LJ. Conventional cytogenetics in myeloma. Methods Mol Med. 2005;113:37-47.

Brigadeau C, Trimoreau F, Gachard N, Rouzier E, Jaccard A, Bordessoule D, et al. Cytogenetic study of 30 patients with multiple myeloma: comparison of 3 day and 6 day bone marrow cultures stimulated or not with cytokines by using a miniaturized karyotypic method. Br J Hematol. 1997;96:594-600.

Hernández JM, Gutiérrez NC, Almeida J, García JL, Sánchez MA, Mateo G, et al. IL-4 improves the detection of cytogenetic abnormalities in multiple myeloma and increases the proportion of clonally abnormal metaphases. Br J Hematol. 1998;103:163-7.

Hartmann L, Biggerstaff JS, Chapman DB, Scott JM, Johnson KR, Ghirardelli KM, et al. Detection of genomic abnormalities in multiple myeloma: the application of FISH analysis in combination with various plasma cell enrichment techniques. Am J Clin Pathol. 2011;136:712-20.

Jourdan M, Ferlin M, Legouffe E, Horvathova M, Liautard J, Rossi JF, et al. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Hematol 1998;100:637-46.

Dong H, Yang HS, Jagannath S, Stephenson CF, Brenholz P, Mazumder A, et al. Risk stratification of plasma cell neoplasm: insights from plasma cell-specific cytoplasmic immunoglobulin fluorescence in situ hybridization (clg FISH) vs. conventional FISH. Clin Lymph Myel Leuk. 2012;12:366-74.

Mercer BR, Rayeroux KC. Detection of chromosome abnormalities using cytoplasmic immunoglobulin staining and FISH in myeloma. Methods Mol Biol. 2011;730:159-71.

Gmidene A, Avet-Loiseau H, Sennana H, Ben Abdallah I, Khlif A, Meddeb B, et al. Molecular cytogenetic aberrations in Tunisian patients with multiple myeloma identified by clg-FISH in fixed bone marrow cells. Cytogenet Genome Res. 2012;136:44-9.

Fonseca R, Blood EA, Oken MM, Kyle RA, Dewald GW, Bailey RJ, et al. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood. 2002;99:3735-41.

Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant LJ, et al. In multiple myeloma t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101:1520-9.

Ross FM, Avet-Loiseau H, Ameye G, Gutierrez NC, Liebisch P, O’Connor S, et al. Report from the European myeloma network on interphase FISH in multiple myeloma and related disorders. Hematologica. 2012;97:1272-7.

Pratt G, Jenner M, Owen R, Snowden JA, Ashcroft J, Yong K, et al. Updates to the guidelines for diagnosis and management of multiple myeloma. Br J Hematol. 2014 Oct;167(1):131-3.

Zandecki M, Lai JL, Facon T. Multiple myeloma: almost all patients are cytogenetically abnormal. Br J Hematol. 1996;94:217-27.

Bird JM, Owen RG, D'Sa S, Snowden JA, Pratt G, Ashcroft J, et al. Guidelines for the diagnosis and management of multiple myeloma 2011. Br J Hematol. 2011;154:32-75.