Increasing incidence of multidrug resistant Pseudomonas aeruginosa in inpatients of a tertiary care hospital

Authors

  • Ved Prakash Department of Microbiology, RMCH, Bareilly, U.P.
  • Prem Prakash Mishra Department of Microbiology, RMCH, Bareilly, U.P.
  • H. K. Premi Department of Obstetrics & Gynaecology, RMCH, Bareilly, U.P.
  • Apoorva Walia Department of Obstetrics & Gynaecology, RMCH, Bareilly, U.P.
  • Shikha Dhawan Department of Obstetrics & Gynaecology, RMCH, Bareilly, U.P.
  • Abhishek Kumar Department of T.B & Chest, RMCH, Bareilly, U.P.

Keywords:

Pseudomonas, Incidence, Nosocomial, Antibiotic, Resistance

Abstract

Background:Pseudomonas aeruginosa is an important pathogen isolated from various clinical infections. The occurrence of multidrug-resistant (MDR) Pseudomonas aeruginosa strains is increasing worldwide and limiting our therapeutic options resulting in high mortality. We aim to study the incidence of multidrug resistant Pseudomonas aeruginosa in inpatients from various departments along with rate of nosocomial infections.

Methods:A cross sectional study from January 1, 2013 to December 31, 2013. A total of 167 Pseudomonas aeruginosa were isolated from 764 clinical specimens. The isolates were identified by standard microbiological techniques. The antibiotic susceptibility was done by Kirby Bauer method.

Results:The highest number of isolates were from pulmonary samples n=90 (53.89%) followed by pus n=48 (28.74%). Overall, 39 (23.36%) isolates were nosocomial. The nosocomial isolates were mainly isolated from department of surgery, orthopaedics, obstetrics & gynaecology followed by others. Among 167 isolates screened, 53 (31.73%) were found to be MDR (resistant to ≥3 classes of antipseudomonal agents). The resistance was most against cephalosporins [Cefepime (65.26%), cefotaxime (60.47%)], fluoroquinolones [Ciprofloxacin (46.1%), levofloxacin (31.87%)] aminoglycosides [Amikacin (37.72%), gentamicin (31.13%)] followed by ureidopenicillins and carbepenems. About 56.75% isolates were suspected Metallo β lactamases producers.

Conclusion:The study suggests that the incidence of nosocomial infection by multidrug resistant Pseudomonas aeruginosa is increasing globally especially the Metallo Beta lactamases producing strains. So there is a continuous need of conduction of surveillance programmes to formulate rational treatment strategies to combat this emerging challenge.

 

References

Babay HAH. Antimicrobial resistance among clinical isolates of pseudomonas aeruginosa from patients in a teaching hospital, Riyadh, Saudi Arabia, 2001-2005. Jpn J Infect Dis. 2007;60:123-5.

C. Ergin, G. Mutlu. Clinical distribution and antibiotic resistance of Pseudomonas species. East J Med. 1999;4(2):65-9.

Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005;41(6):848-54.

Gilardi GL. Identification of Pseudomonas and related bacteria. In: Gilardi GL, eds. Glucose Nonfermenting Gram-Negative Bacteria in Clinical Microbiology. 4th ed. Boca Raton: CRC Press; 1978: 15–44.

Franklin R. Cockerill. Performance standards for antimicrobial disk susceptibility tests. In: Franklin R. Cockerill, Matthew A. Wikler, Jeff Alder, Michael N. Dudley, George M. Eliopoulos, Mary Jane Ferraro, et al., eds. Approved Standard. 10th ed. Wayne: Clinical and Laboratory Standards Institute; 2009: 1-58.

Tam VH, Chang KT, Abdelraouf K, Brioso CG, Ameka M, McCaskey LA, et al. Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(3):1160-4.

Emori TG, Culver DH, Horan TC, Jarvis WR, White JW, Olson DR, et al. National nosocomial infections surveillance system (NNIS): description of surveillance methods. Am J Infect Control. 1991;19:19-35.

Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamases producing clinical isolates of Pseudomonas spp and Acinetobacter spp. J Clin Microbiol. 2002;40:3798-801.

Javiya VA, Ghatak SB, Patel KR, Patel JA. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Indian J Pharmacol. 2008;40(5):230-4.

Chaudhari VL, Gunjal SS, Mehta M. Antibiotic resistance patterns of pseudomonas aeruginosa in a tertiary care hospital in central India. Int J Med Sci Public Health. 2013;2:386-9.

K. M. Mohanasoundaram. Antimicrobial resistance in pseudomonas aeruginosa. J Clin Diagn Res. 2011;5(3):491-4.

O KO, A PC, O W, B ST, UA. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from clinical specimens in a tertiary hospital in north eastern Nigeria. The internet journal of microbiology 2009;8(2):1-5.

Bergmans DC, Bonten MJ, Gaillard CA, Paling JC, van der Geest S, van Tiel FH, et al. Prevention of ventilator-associated pneumonia by oral decontamination: a prospective, randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med. 2001;164(3):382-8.

Lizioli A, Privitera G, Alliata E, Antonietta Banfi EM, Boselli L, Panceri ML, et al. Prevalence of nosocomial infections in Italy: result from the Lombardy survey in 2000. J Hosp Infect. 2003;54:141-8.

Marilee D. Obritsch, Douglas N. Fish, Robert MacLaren, Rose Jung. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004;48(12):4606-10.

Brown PD, Izundu A. Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Rev Panam Salud Publica. 2004;16:125-30.

Al-Tawfiq JA. Occurrence and antimicrobial resistance pattern of inpatient and outpatient isolates of Pseudomonas aeruginosa in a Saudi Arabian hospital: 1998-2003. Int J Inf Dis. 2007;11:109-14.

Navneeth BV, Sridaran D, Sahay D, Belwadi M. A preliminary study of metallo-β-lactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res. 2002;116:264-8.

Gupta V, Datta P, Chander J. Prevalence of metallo-β-lactamase (MBL) producing Pseudomonas spp and Acinetobacter spp in a tertiary care hospital in India. J Inf. 2006;52:311-4.

Jesudason MV, Kandathil AJ, Balaji V. Comparison of two methods to detect carbapenemase and metallo-β-lactamase production in clinical isolates. Indian J Med Res. 2005;121:780-3.

Agarwal VA, Dongre SA, Powar RM. Antimicrobial resistance profile of metallo-β-lactamase Pseudomonas aeruginosa producing metallo-β-lactamases. Indian J Med Res. 2006;124:588-90.

Mendiratta DK, Deotale V, Narang P. Metallo-β-lactamase producing Pseudomonas aeruginosa in a hospital from a rural area. Indian J Med Res. 2005;121:701-3.

R. K, Flamm, M. K. Weaver, C. Thornsberry, M. E. Jones, J. A. Karlowsky, D. F. Sahm. Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother. 2004;48:2431-6.

Downloads

Published

2017-01-26

How to Cite

Prakash, V., Mishra, P. P., Premi, H. K., Walia, A., Dhawan, S., & Kumar, A. (2017). Increasing incidence of multidrug resistant Pseudomonas aeruginosa in inpatients of a tertiary care hospital. International Journal of Research in Medical Sciences, 2(4), 1302–1306. Retrieved from https://www.msjonline.org/index.php/ijrms/article/view/2412

Issue

Section

Original Research Articles