Prevalence of extended spectrum β-lactamase, AmpC β-lactamase and metallo β-lactamase mediated resistance in Escherichia coli from diagnostic and tertiary healthcare centers in south Bangalore, India

Authors

  • Rituparna Tewari 1ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India 2Department of Microbiology, Jain University, Bengaluru-560011, Karnataka India
  • Susweta D. Mitra 1ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India 3School of Basic and Applied Sciences, Dayananda Sagar University, Bengaluru-560078, Karnataka, India
  • Feroze Ganaie ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India
  • Nimita Venugopal 1ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India 2Department of Microbiology, Jain University, Bengaluru-560011, Karnataka India
  • Sangita Das 1ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India
  • Rajeswari Shome ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India
  • Habibur Rehman ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India
  • Bibek R. Shome ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru-560064, Karnataka, India

DOI:

https://doi.org/10.18203/2320-6012.ijrms20181288

Keywords:

AmpC β-Lactamase, Escherichia coli, Extended Spectrum β-Lactamase, Healthcare centers, Metallo β-Lactamase

Abstract

Background: The increasing reports on multidrug resistant Escherichia coli has become a potential threat to global health. Here, we present a cross-sectional study to characterize extended spectrum β-lactamase, AmpC β-lactamase and metallo β-lactamase producing E. coli isolated from different human clinical samples.

Methods: A total of 300 clinical Gram negative bacterial isolates were collected and re-characterized for the identification of E. coli following standard microbiological techniques. The antimicrobial susceptibility of E. coli isolates was initially screened by Kirby-Bauer disk diffusion and MIC methods. The resistant isolates were confirmed to be ESBL, AmpC and MBL producers by their respective phenotypic confirmatory tests of combined disc method.

Results: We identified 203 (68%) E. coli and 97 (32%) Non-E. coli isolates. The highest recovery of E. coli was from urine samples 72 (35%). Combined disc method using ceftazidime/ceftazidime+clavulanic acid and cefotaxime/cefotaxime+clavulanic acid confirmed 156 (79%) and 144 (73%) E. coli as ESBL producers, respectively. Thirty-four (34%) and 16 (27%) resistant E. coli isolates were confirmed to be AmpC and MBL producers, likewise.

Conclusions: Increased prevalence of ESBL, AmpC and MBL producing E. coli were observed. Beta-lactamase mediated resistance appears to be prime mechanism in the multidrug resistant E. coli. Thus, early detection of beta lactamase producing E. coli is necessary to avoid treatment failure and prevent the spread of MDR.

References

Gniadkowski M. Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microbiol Infect. 2001;7:597-608.

Neuchauser MM, Weinstan RA, Rydman IR, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among Gram negative Bacilli in US intensive care units: implications for flouroquinolonesuse. JAMA. 2003;289:885-8.

Peleg YA, Hooper CD. Hospital-Acquired Infections Due to Gram-Negative Bacteria. N Engl J Med. 2010;362:1804-13.

Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42 Suppl 2:S82-9.

Laxminarayan R, Chaudhury RR. Antibiotic Resistance in India: Drivers and Opportunities for Action. PLoS Med. 2016;13:e1001974.

Kong KF, Schneper L, Mathee K. Beta-lactam Antibiotics: From Antibiosis to Resistance and Bacteriology. APMIS. 2010;118:1-36.

Tamang MD, Nam HN, Jang GC, Kim SR, Chae MH, Jung SC, et al. Molecular Characterization of Extended-Spectrum-β-Lactamase-Producing and Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli Isolated from Stray Dogs in South Korea. Antimicrob Agents Chemother. 2012;56:2705-12.

Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211-33.

Rawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010;2:263-274.

Babic M, Hujer AM, Bonomo RA. What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Update. 2006;9:142-156.

Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3:15-21.

Chiotos K, Han JH, Tamma PD, Carbapenem-Resistant Enterobacteriaceae Infections in Children. Curr Infect Dis Rep. 2016;18:2.

Pandya NP, Prajapati SB, Mehta SJ, Kikani KM, Joshi PJ. Evaluation of various methods for detection of metallo- lactamase (MBL) production in gram negative bacilli. Int J Biol Med Res. 2011;2:775-777.

Isenberg, HD. Clinical Microbiology Procedures Handbook. 2nd Edi. Washington DC: ASM Press, 2004

Clinical Laboratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing; Twenty-Fifth informational supplement document. Wayne, PA: CLSI: 2015;35:M100-S25.

Tan TY, Ng LS, He J, Koh TH, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother. 2009;53:146-9.

Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. Phenotypic detection of metallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. Scientific World J. 2012;2012.

Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and Ampc β Lactamases Producing Superbugs -Havoc in the Intensive Care Units of Punjab India. J Clin Diagn Res. 2013;7:70-3.

Laxminarayan R, Chaudhury RR. Antibiotic Resistance in India: Drivers and Opportunities for Action. PLoS Med. 2016;13:e1001974.

Mukherjee T, Pramod K, Gita S, Medha YR. Nosocomial infections in geriatric patients admitted in ICU. J Ind Acad Geriatrics. 2005;2:61-4.

Richards M, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000;21:510-15.

WHO. Prevention of hospital-acquired infection: a practical guide. 2nd Edi. Geneva: WHO;2002.

Wiegand I, Geiss HK, Mack D, Sturenburg E, Seifert H. Detection of Extended Spectrum Beta-Lactamases among Enterobacteriaceae by Use of Semiautomated Microbiology Systems and Manual Detection Procedures. J Clini Microbiol. 2007;45:1167-1174.

Sharma S, Bhat GK, Shenoy S. Virulence factors and drug resistance in Escherichia coli isolated from extraintestinal infection. Indian J Med Microbiol. 2007;25:369-73.

Goyal A, Prasad KN, Prasad A, Gupta S, Ghoshal U, Ayyagari A. Extended spectrum β-lactamases in Escherichia coli and Klebsiella pneumoniae and associated risk factors. Indian J Med Res. 2009;129:695-700.

Owens RC Jr, Rice L. Hospital-based strategies for combating resistance. Clin Infect Dis. 2006;42 Suppl 4:S173-81.

Madhumati B, Rani L, Ranjini CY, Rajendran R. Prevalence of AMPC Beta Lactamases among Gram Negative Bacterial Isolates in a Tertiary Care Hospital. Int J Curr Microbiol App Sci. 2015;4:219-27

Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agent Chemother. 2002;46:1-11.

Jacoby GA. AmpC β- lactamases. Clin Microbiol Rev. 2009;22:161-82

Singhal S, Mathur T, Khan S, Upadhyay DJ, Chugh S, Gaind R, et al. Evaluation of methods for AmpC β-lactamase in gram-negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol. 2005;23:20-124.

Singtohin S, Chanawong A, Lulitanond A, Sribenjalux P, Auncharoen A, Kaewkes W, et al. CMY-2, CMY-8b, and DHA-1 plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from a university hospital, Thailand. Diagn Microbiol Infect Dis. 2010;68:271-7.

Yan JJ, Hsueh PR, Lu JJ, Chang FY, Shyr JM, Wan JH, et al. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother. 2006;50:1861-4.

Gupta V, Garg R, Chander J. Detection of AmpC β-lactamases in Gram negative Bacilli- A study from North India. Int J Infect Dis. 2008;12:e121-e121.

Tsakris A, Themeli-Digalaki K, Poulou A, Vrioni G, Voulgari E, Koumaki V, et al. Comparative evaluation of combined disk tests using different boronic acid compounds for detection of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol. 2011;49:2804-9.

Bora A, Sanjana R, Jha BK, Mahaseth SN, Pokharel K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes. 2014;7:557.

Bandekar N, Binodkumar CS, Basavarajappa KG, Prabhakar PJ, Nagaraj P. Beta- lactamases mediated resistance amongst the gram negative bacilli in burn infections. Int J Biol Res. 2011;2:766-70.

Downloads

Published

2018-03-28

How to Cite

Tewari, R., Mitra, S. D., Ganaie, F., Venugopal, N., Das, S., Shome, R., Rehman, H., & Shome, B. R. (2018). Prevalence of extended spectrum β-lactamase, AmpC β-lactamase and metallo β-lactamase mediated resistance in Escherichia coli from diagnostic and tertiary healthcare centers in south Bangalore, India. International Journal of Research in Medical Sciences, 6(4), 1308–1313. https://doi.org/10.18203/2320-6012.ijrms20181288

Issue

Section

Original Research Articles