DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20201328

Comparative study of retinal nerve fibre layer thickness in normal and glaucomatous human eyes as measured by optical coherence tomography

Ritu Jain, Nupur Choudhary

Abstract


Background: Glaucoma is a disease primarily associated with damage to the Retinal Ganglion Cell (RGC) bodies and axons, which causes characteristic patterns of Visual Field (VF) and changes in the appearance of the Optic Nerve Head (ONH). This Study Compares Nerve Fibre layer thickness in normal and Glaucomatous Human Eye.

Methods: It is a case control observational study carried out in 100 patients in a tertiary eye care hospital in the department of ophthalmology in the period from 1st January 2019 to 30th June 2019.

Results: The diagnostic ability for distinguishing between normal and glaucoma patients were same when authors consider average RNFL thickness and average GCC thickness. Diagnostic accuracy increases when authors consider both RNFL and GCC thickness. There was a significant difference in both RNFL and GCC thickness between normal and glaucoma patient (p<0.001). The mean deviation shows a significant correlation with all the parameters in eyes with glaucoma (<0.001).

Conclusions: RNFL thickness as measured by OCT showed statistically significant correlation with glaucoma. RNFL seems to have higher sensitivity and specificity for the detection of early glaucoma. Diagnostic accuracy increases when we include other parameters like RNFL and visual fields.


Keywords


Ganglion cells, Nerve fiber layer, Optical coherence tomography, Optic nerve head, Primary open angle glaucoma

Full Text:

PDF

References


Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004 May 22;363(9422):1711-20.

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Bri J Ophthalmol. 2006 Mar 1;90(3):262-7.

Ramakrishnan R, Nirmalan PK, Krishnadas R, Thulasiraj RD, Tielsch JM, Katz J, et al. Glaucoma in a rural population of southern India: the Aravind comprehensive eye survey. Ophthalmology. 2003 Aug 1;110(8):1484-90.

Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014 May 14;311(18):1901-11.

Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003 Jan 1;110(1):177-89.

Leung CK, Cheung CY, Weinreb RN. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257-63.

Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Bri J Ophthalmol. 2011 Jul 1;95(7):909-14.

Mansoori T, Viswanath K, Balakrishna N. Reproducibility of peripapillary retinal nerve fibre layer thickness measurements with spectral domain optical coherence tomography in normal and glaucomatous eyes. Bri J Ophthalmol. 2011 May 1;95(5):685-8.

Mwanza JC, Oakley JD, Budenz DL, Chang RT, O'Rese JK, Feuer WJ. Macular ganglion cell-nner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Inves Ophthalmol Visual Sci. 2011 Oct 1;52(11):8323-9.

Hong S, Kim CY, Lee WS, Seong GJ. Reproducibility of peripapillary retinal nerve fiber layer thickness with spectral domain cirrus high-definition optical coherence tomography in normal eyes. Japanese J Ophthalmol. 2010 Jan 1;54(1):43-7.

Harwerth RS, Carter-Dawson L, Shen F, Smith EL, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Inves Ophthalmol Visual Sci. 1999 Sep 1;40(10):2242-50.

Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990 Oct 1;300(1):5-25.

Wässle H, Grünert U, Röhrenbeck J, Boycott BB. Cortical magnification factor and the ganglion cell density of the primate retina. Nature. 1989 Oct;341(6243):643-6.

Li S, Wang X, Li S, Wu G, Wang N. Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography. Graefe's Arch Clin Exper Ophthalmol. 2010 Mar 1;248(3):429-34.

Nouri-Mahdavi K, Hoffman D, Tannenbaum DP, Law SK, Caprioli J. Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol. 2004 Feb 1;137(2):228-35.

Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology. 2005 Jan 1;112(1):3-9.

Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, Bosworth CF, Sample PA, Weinreb RN. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Investigative ophthalmology & visual science. 2001 Aug 1;42(9):1993-2003.

Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci. 2006;47:2006-10.

Lee JW, Yau GS, Woo TT, Lai JS. The association between macular thickness and peripapillary retinal nerve fiber layer thickness in Chinese children. Medicine. 2015 Feb;94(8).