Oxidative stress markers in infectious respiratory diseases: current clinical practice

P. T. Bwititi, K. Chinkwo


Cases of some infectious respiratory diseases are on the increase and aetiology of these diseases is associated with assault from exogenous and endogenous oxidants. This requires constant appraisal on current knowledge hence this review looks at current knowledge on oxidative and nitrosative stresses in selected infectious respiratory diseases and the utility of stress biomarkers. A major metabolic or organic stress is oxidative stress; an imbalance between oxidants and anti-oxidants and it is implicated in aetiology of various diseases including respiratory diseases. Physiologically reactive oxygen and nitrogen species are beneficial since they take part in various cellular processes. During infection, the host produces reactive species to defend against invading pathogens but some microorganisms have mechanisms to defend against the reactive oxygen and nitrosative species produced by host. Hence, there is also the oxidative stress ‘pros and cons’ paradox in infectious respiratory disease, which makes careful interpretation of laboratory methods necessary. Although most reactive oxygen and nitrosative species are not very stable and cannot be measured directly, there are indirect assessment methods of oxidative stress or oxidants or anti-oxidants. Various biological samples such as exhaled air, exhaled breath condensate, sputum and blood are used in investigation and management of infectious respiratory diseases. Measurement of oxidative stress can be done using various laboratory methods including, chemical, immunoassays and chromatographic thus allowing oxidative stress assessment to be important in infectious respiratory diseases.


Oxidative stress, Reactive oxygen species, Reactive nitrogen species, Infectious respiratory diseases, Inflammation, Laboratory methods

Full Text:



Mak JC. Pathogenesis of COPD. Part 11. Oxidative-antioxidative imbalance. Intern J Tuber Lung Dis. 2008;12(4):368-74.

Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95.

Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Intern J Environ Res Pub Health. 2013;10(9):3886-907.

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Org J. 2012;5(1):9-19.

Komaravelli N, Casola A. Respiratory viral infections and subversion of cellular antioxidant defences. J Pharmacogen Pharmacoprot. 2014;5(4): ppii:1000141.

Drew B, Leeuwenburgh C. Aging and the role of reactive nitrogen species. Ann New York Acad Sci. 2002;959:66-81.

Martí MC1, Florez-Sarasa I, Camejo D, Pallol B, Ortiz A, Ribas-Carbó M, et al. Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves. Physiol Plant. 2013;147:194-206.

Zaki HM, Okamoto T, Sawa T, et al. Nitrative stress in respiratory inflammation caused by influenza virus infection. Clin Exp Allergy Rev. 2007;7:19-26.

Andreadis AA, Hazem SL, Comhair SA, et al. Oxidative and nitrosative events in asthma. Free Rad Biol Med. 2003;35(3):213-25.

Poole RK, Hughes MN. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microb. 2000;36(4):775-83.

MacMillam-Crow LA, Greendorfer JP, Vickers SM, et al. Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophy. 2000;377(2):350-6.

Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Rad Res. 1999;31(6):651-69.

Lambeth DJ. NOX enzymes and the biology of reactive oxygen. Nat Rev. 2004;4:181-9.

Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907-16.

Sies H. Oxidative stress: oxidants and antioxidants. Exp Phys. 1997;82(2):291-5.

Domej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD-implications and relevance for treatment. Intern J COPD. 2014;9:1207-24.

Ottaviano FG, Handy DE, Loscalzo J. Redox regulation in the extracellular environment. Cir J. 2008;72(1):1-16.

Vijayamalini M, Manoharan S. Lipid peroxidation, vitamin C, E and reduced glutathione levels in patients with pulmonary tuberculosis. Cell Biochem Funct. 2004;22:19-22.

Kwiatkowska S, Piasecka G, Zieba M, et al. Increased serum concentration of conjugated diens and malondialdehyde in patients with pulmonary tuberculosis. Resp Med. 1999;93:272-6.

Lang JD, McArdle PJ, O’Reilly PJ, Matalon S. Oxidant-antioxidant balance in acute lung injury. Chest. 2002;122: 314S-20S.

Calhoun WJ, Reed HE, Moest DR, Stevens CA. Enhanced superoxide production by alveolar macrophages and air-space cells, airway inflammation, and alveolar macrophage density after segmental antigen bronchoprovocation in allergic subjects. Am Rev Resp Dis. 1992;145(2 Pt 1):317-25.

Antczak A, Ciebiada M, Pietras T, et al. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Arch Med Sci. 2012;8(2):277-85.

Kinnula VL, Crapo JD, Raivio KO. Biology of disease: generation and disposal of reactive oxygen metabolites in the lung. Lab Invest. 1995;73(1):3-19.

Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Europ J Pharm. 2006;533(1-3):222-39.

Akaike T, Noguchi Y, Ijiri S, et al. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Nat Acad Sci (USA). 1996;(6):2448-53.

Akaike T, Maeda H. Nitric oxide and virus infection. Immunology. 2000;101(3):300-8.

Akaike T, Fujii S, Kato A, Miyamoto Y, Sawa T, Okamoto Set al. Viral mutation accelerated by nitric oxide production during infection in vivo. FASEB. 2000;14:1447-54.

Akaike T, Okamoto S, Sawa T, et al. 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Nat Acad Sci (USA). 2003;100(2):685-90.

Yoshitake J, Akaike T, Akuta T, Tamura F, Ogura T, Esumi H, et al. Nitric oxide as an endogenous mutagen for sendai virus without antiviral activity. J Virol. 2004;78(16):8709-719.

James SL. Role of nitric oxide in parasitic infections. Microb Rev. 1995;59(4):533-47.

Beckman JS, Koppenol WH. Nitric oxide, superoxide and peroxynitrite: the good, the bad and the ugly. Am J Physiol. 1996;271(5Pt 1):C1424-C37.

Satriano J. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article. Amino Acids. 2004;26(4):321-9.

Peranzoni E, Marigo I, Dolcetti L, et al. Role of arginine metabolism in immunity and immunopathology. Immunobiology. 2007;212:795-812.

Pfeiffer S, Lass A, Schmidt K, et al. Protein tyrosine nitration in cytokine-activated murine macrophages. Involvement of a peroxidise/nitrite pathway rather than peroxynitrite. J Biol Chem. 2001;276(36):34051-58.

Sackesen C, Ercan H, Dizdar E, et al. A comprehensive evaluation of the enzymatic and nonenzymatic antioxidant systems in childhood asthma. J Allergy Clin Immunol. 2008;122(1):78-85.

Comhair SA, Thomassen MJ, Erzurum SC. Differential induction of extracellular glutathione peroxidise and nitric oxide synthase 2 in airways of healthy individuals exposed to 100% O2 or cigarette smoke. Am J Resp Cell Mol Biol. 2000;23:350-54.

Elks PM, van der Vaart M, van Hensbergen V, et al. Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model. PLOS ONE 2014;9(6):e100929.

Jones GS, Amirault HJ. Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process. J Infect Dis. 1990;162(3):700-4.

Long R, Light B, Talbot JA. Mycobacteriocidal action of exogenous nitric oxide. Antimicro Agents Chemo. 1999;43(2): 403-5.

Shimizu T, Cai S, Tomioka H. Roles of reactive nitrogen intermediates and transforming growth factor-beta produced by immunosuppressive macrophages in the expression of suppressor activity against T cell proliferation induced by TCR stimulation. Cytokines. 2005;30(1):7-13.

Steichen C, Chen P, Kearney JF, et al. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bact 2003; 185(6): 1903-10.

Boris VB, Forte E, Siletsky SA, Arese M, Davletshin AI, Sarti P, et al. Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents. Biochemistry (Moscow). 2015;80(5):669-81.

Maizels RM, Balic A, Gomez-Escobar N, et al. Helminth parasites – master of regulation. Immunol Rev. 2004;201(1):89-116.

Chawla M, Parikh P, Saxena A, et al. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microb. 2012;85(6):1148-65.

Ehrt S, Schnappinger D. Mycobacterium survival strategies in the phagosome: defence against host stresses. Cell Microb. 2009;11(8):1170-8.

Voskuil MI, Bartek IL, Visconti K, et al. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Frontiers in Microbiology: Cell Infect Micro. 2011;2. doi:10.3389/fmicb.2011.00105.

Flynn JL, Chan J. Immunology of tuberculosis. Ann Rev Immunol. 2001;19:93-129.

Buchmeier NA, Newton GL, Fahey RC. A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bact. 2006;188(17):6245-52.

Ouellet H, Ouellet Y, Richard C, et al. Truncated haemoglobin HbN protects Mycobacterium bovis nitric oxide. Proc Am Acad Sci (USA). 2002;99(9):5902-7.

Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, et al. Peptide methionine sulfoxide reductase: structure, mechanism of action and biological function. Arch Biochem Biophys. 2002;397(2):172-8.

Douglas T, Daniel DS, Parida BK, et al. Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J Bact. 2004;186(11):3590-98.

Boschi-Muller S, Olry A, Antoine M, et al. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim et Biophy Acta. 2005;1703(2):231-8.

Raines KW, Kang TJ, Hibbs S, Cao GL, Weaver J, Tsai P, et al. Importance of nitric oxide synthase in the control of infection by Bacillus anthracis. Infect Immunol. 2006;74(4):2268-76.

Brennan RE, Russell K, Zhang G, et al. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase 1 Coxiella burnetii infections. Infect Immunol. 2004;72(11):6666-75.

Marriott HM, Ali F, Read RC, et al. Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB. 2004;18(10):1126-8.

Fang FC. Perspectives series: host-pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin Invest. 1997;99(12):2818-25.

Hori K, Burd PR, Furuke K, et al. Human immunodeficiency virus-1-infected macrophages induce inducible nitric oxide (NO) production in astrocytes: astrocytic NO as a possible mediator of neural damage in acquired immunodeficiency syndrome. Blood. 1999;93(6):1843-50.

Saleh D, Ernst P, Lim S, et al. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of NO synthase: effect of inhaled glucocorticoid. FASEB. 1998;12(11):929-37.

Wright DT, Cohn LA, Li H, Fischer B, Li CM, Adler KB. Interactions of oxygen radicals with airway epithelium. Environ Health Persp. 1994;102(10):85-90.

Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Europ Resp J. 2003;22: 672-88.

Lois M, Brown LAS, Moss M, et al. Ethanol ingestion increases activation of matrix metalloproteinases in rat during acute endotoxemia. Am J Resp Crit Care Med. 1999;160(4):1354-60.

Ware LB, Matthay MA. Medical progress: the acute respiratory distress syndrome. New Engl J Med. 2000;342(18):1334-49.

Rosanna DP, Salvatore C. Reactive oxygen species, inflammation and lung diseases. Curr Pharm Design. 2012;18(26):3889-900.

Heffner JE, Repine JE. Pulmonary strategies of antioxidant defense. Am Rev Resp Dis. 1989;140(2):531-4.

Howlett CE, Hutchinson JS, Veinot JP, Chiu A, Merchant P, Fliss H. Inhaled nitric oxide protects against hyperoxia-induced apoptosis in rat lungs. Am J Phys: Lung Cell Mol Phys. 1999;277(3):L596-L605.

Wada H, Takizawa H. Future treatment for COPD: targeting oxidative stress and its related signal. Rec Pat Inflam Allergy Drug Disc. 2013;7(1): 1-11.

Wozniak A, Gorecki D, Szpinda M, Celestyna Mila-Kierzenkowska C, Woźniak B. Oxidant-antioxidant balance on blood of patients with chronic obstructive pulmonary disease after smoking cessation. Oxid Med Cell Long 2013; Article ID 897075, 9 pages, 10.1155/ 2013/897075.

Lamsal M, Gautam N, Bhatta N, Toora BD, Bhattacharya SK, Baral N. Evaluation of lipid peroxidation product, nitrite and antioxidant levels in newly diagnosed and two months follow-up patients with pulmonary tuberculosis. SE Asian J Med Pub Health 2007; 38: 695-703.

Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM, et al. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS ONE. 2011;6(10):e26254.

Madebo T, Lindtjorn B, Aukrust P, Berge RK.. Circulating antioxidants and lipid peroxidation products in untreated tuberculosis patients in Ethopia. Am J Clin Nut. 2003;78:117-22.

MacNee W. Oxidants and COPD. Curr Drug Targ Inflam All. 2005;4(6):627-41.

Hansel TT, Barnes PJ. New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet. 2009;374(9691):744-55.

Wiegman CH, Li F, Clarke CJ, Jazrawi E, Kirkham P, Barnes PJ, et al. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model. Clin Sci (London). 2014;126(6):425-40.

Taggart C, Cervantes-Laurean D, Kim G. Oxidation of either methionine 351 or methionine 358 in α1-antitrypsin cause loss of anti-neutrophil elastase activity. J Biol Chem. 2000;275(35):27258-65.

Komaki Y, Suguira H, Koarai A, Tomaki M, Ogawa H, Akita T,. Cytokine-mediated xanthine oxidase upregulation in chronic obstructive pulmonary disease’s airways. Pul Pharm Therap. 2005;18(4):297-302.

Richter C, Gogvadze V, Laffranchi R, Ralph Schlapbach R, Schweizer M, Suter M. Oxidants in mitochondria: from physiology to disease. Biochim et Biophys Acta. 1995;1271(1):67-74.

Di Pietro M, Filardo S, de Santis F, Mastromarino P, Sessa R. Chlamydia pneumoniae and oxidative stress in cardiovascular disease: state of the art and prevention strategies. Intern J Mol Sci. 2015;16:724-35.

Schiavoni G, di Pietro M, Ronco C, De Cal M, Cazzavillan S, Rassu M, et al. Chlamydia pneumonia infection as a risk factor for accelerated atherosclerosis in haemodialysis patients. J Biol Reg Homeos Agents. 2010;24:367-75.

Swierszcz J, Jacek DS, Milewicz T, Krzysiek J , Sztefko K, Galicka-Latała D. One-year observation of inflammatory markers in patients with aortic valve stenosis who expressed high or low Chlamydia pneumonia antibody titres. J Heart Valve Dis. 2012;21:599-607.

Di Pietro M, Filardo S, de Santis F, Sessa R. Chlamydia pneumoniae and oxidative stress in atherosclerotic lesion development through oxidative stress: a brief overview. Intern J Mol Sci. 2013;14:15105-20.

Yang CS, Yuk JM, Jo EK. The role of nitric oxide in mycobacterial infections. Immunol Net. 2009;9(2):46-52.

Lee PP, Chan KW, Jiang L, Chen T, Li C, Lee TL, et al. Susceptibility to mycobacterial infections in children with X-linked chronic granulomatous disease: a review of 17 patients living in a region endemic for tuberculosis. Ped Infect Dis J. 2008;27(3):224-30.

Kuo HP, Wang CH, Huang KS, Lin HC, Yu CT, Liu CY, et al. Nitric oxide modulates interleukin-1 beta and tumour necrosis factor-alpha synthesis by alveolar macrophages in pulmonary tuberculosis. Am J Resp Crit Care Med. 2000;161(1):192-9.

Alam MS, Akaike T, Okamoto S, Kubota T, Yoshitake J, Sawa T, et al. Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immunol. 2002;70(6):3130-42.

Aston C, Rom WN, Talbot AT, Reibman J. Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide. Am J Resp Crit Care Med. 1998;157(6 Pt 1):1943-50.

Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z. Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis. 1997;78(5-6):247-55.

Gautam N, Jayan A, Dubey RK, et al. Comparative study of impact of smoking in healthy and pulmonary tuberculosis patients measured by indices of oxidative stress. Intern J Med Sci Biotech. 2013; 1(4):45-54.

Ordway D, Henao-Tomayo M, Shanley C, Smith EE, Palanisamy G, Baolin Wang B, et al. Influence of Mycobacterium bovis BCG vaccination on cellular immune response of guinea pigs challenged with Mycobacterium tuberculosis. Clin Vacc Immunol. 2008;15:1248-58.

Jack CI, Jackson MJ, Hind CR. Circulating markers of free radical activity in patients with pulmonary tuberculosis. Tub Lung Dis. 1994;75(2):132-7.

Muller F, Svardal AM, Nordoy I, Berge RK, Aukrust P, Frøland SS. Virological and immunological effects of antioxidant treatment in patients with HIV infection. Europ J Clin Invest. 2000;30(10):905-14.

Reddy YN, Murthy SV, Krishna DR, Prabhakar MC. Role of free radicals and antioxidants in tuberculosis patients. Ind J Tuber. 2004;51:213-8.

Komaravelli N, Tian B, Ivanciuc T, Mautemps N, Brasier AR, Garofalo RP, et al. Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of NRF2. Free Rad Biol Med. 2015.

Footitt J, Mallia P, Durham AL, Ho WE, Trujillo-Torralbo MB, Telcian AG, et al. Oxidative and nitrosative stress and histone deacetylase-2 activity in exacerbations of chronic obstructive pulmonary disease. Chest. 2015.

Nakahara Y, Hayashi S, Fukuno Y, Kawashima M, Yatsunami J. Increased interleukin-5 levels in bronchoalveolar lavage fluid is a major factor for eosinophil accumulation in acute eosinophilic pneumonia. Respiration. 2001;68(4):389-95.

Furukawa K, Sugiura H, Matsunaga K. Increase of nitrosative stress in patients with eosinophilic pneumonia. Resp Res (Open Access). 2011;12:81(11 pages).

Katoh S, Matsumoto N, Matsumoto K, Fukushima K, Matsukura S. Elevated interleukin-18 levels in bronchoalveolar lavage of patients with eosinophilic pneumonia. Allergy. 2004;59(8):850-6.

Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules. 2011;16(3):2032-52.

Komaravelli N, Kelley JP, Garofalo MP, Wu H2, Casola A, Kolli D. Role of dietary antioxidants in human metapneumovirus infection. Virus Res. 2015;200:19-23.

Seyedrezazadeh E, Ostadrahimi A, Mahboob S, Assadi Y, Ghaemmagami J, Pourmogaddam M. Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology. 2008;13(2):294-8.

Kishta OA, Iskandar M, Dauletbaev N, Kubow S, Lands LC. Pressurises whey protein can limit bacterial burden and protein oxidation in Pseudomonas aeruginosa lung infection. Nutrition. 2013;29(6):918-24.

Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Cur Opin Clinl Nut Metab Care. 2009;12(6):646-52.

Nadeem A, Masood A, Siddiqui N. Oxidant-anti-oxidant imbalance in asthma: scientific evidence, epidemiological data and possible therapeutic options. Therap Adv Resp Dis. 2008;2(4):215-35.

Antczak A, Nowak D, Shariati B, Król M, Piasecka G, Kurmanowska Z. Increased hydrogen peroxide and thiobarbituric acid-reactive products in expired breath condensate of asthmatic patients. Europ Resp J. 1997;10(6):1235-41.

Inonu H, Doruk S, Sahin S, Erkorkmaz U, Celik D, Celikel S et al. Oxidative stress levels in exhaled breath condensate associated with COPD and smoking. Resp Care. 2012;57(3):413-9.

Murata K, Fujimoto K, Kitaguchi Y, Horiuchi T, Kubo K, Honda T.. Hydrogen peroxide content and pH of expired breath condensate from patient asthma and COPD. J Chr Obstr Pul Dis. 2014;11(1):81-7.

Tufvesson E, Ekberg M, Bjermer L. Inflammatory biomarkers in sputum predict COPD exacerbations. Lung. 2013;191:413-6.

Drozdovsk O, Barta I, Antus B. Sputum eicosanoid profiling in exacerbations of chronic obstructive pulmonary disease. Respiration. 2014;87:408-15.

Morrison D, Rahman I, Lannan S, MacNee W. Epithelial permeability, inflammation and oxidant stress in the air spaces of smokers. Am J Resp Crit Care Med. 1999;159(2):473-9.

Nowark D, Kasielski M, Antczak A, Pietras T, Bialasiewicz P. Increased content of thiobarbituric acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease: no significant effect of cigarette smoking. Resp Med. 1999;93(6):389-96.

Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Resp Crit Care Med. 2000;162 (3):1175-7.

Castillo RL, Carrasco RA, Alvarez PI, Ruiz M, Luchsinger V, Zunino E, et al. Relationship between severity of adult community-acquired pneumonia and impairment of the antioxidant defense system. Biol Res. 2013;46:207-13.

Kharitonov SA, Barnes PJ. Exhaled markers of pulmonary diseases. Am J Resp Crit Care Med. 2001;163(7):1693-722.

Romieu I, Barraza-Villarreal A, Escamilla-Nunez C, Almstrand AC, Diaz-Sanchez D, Sly P, Det al. Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol. 2008;121(4):903-9.

Gerritsen WB, Asin J, Zanen P, van den Bosch JM, Haas FJ. Markers of inflammation and oxidative stress in exacerbated chronic obstructive pulmonary disease patients. Resp Med. 2005;99(1):84-90.

Lin JL, Thomas PS. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. J Chr Obstr Pul Dis. 2010;7(4):291-306.