Serum iron level in patients with COVID-19: a case report study

Rasoul Alipour, Seyed Hasan Hashemi, Fariba Mikaeili


Coronavirus disease emerged in Wuhan, China in December 2019 and led to worldwide pandemic in March 2020. Due to early diagnose, treatment and prevent transmission of COVID-19 disease, we need rapid laboratory tests and develop them. This paper focuses on serum Iron level in patients with COVID-19. We assess the serum Iron level due to the following reasons: I. Iron is a key part of hemoglobin structure in which is essential for providing Oxygen to the body organs, particularly for the patients with pulmonary involvement such as COVID-19. II. Iron deficiency can contribute to muscle weakness and reduction of respiratory capacity, at which increases the risk of deterioration of COVID-19 patients. III. Elevation in Hepcidin level (due to the increase in IL-6 level) in COVID-19 patients inhibits Iron absorption from intestinal lumen and blocks the Iron release from macrophages. IV. Iron is an essential element in infectious suppress and inflammatory process. We noticed that most of the patients, especially admitted to hospital due to the respiratory symptoms, have lower serum Iron level.


Coronavirus, COVID-19, Ferritin, Hepcidin, Serum iron level

Full Text:



Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):29.

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-8.

Gabutti G, d'Anchera E, Sandri F, Savio M, Stefanati A. Coronavirus: Update Related to the Current Outbreak of COVID-19. Infect Dis Ther. 2020;8:1-13.

Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6.

Tezer H, Bedir Demirdağ T. Novel coronavirus disease (COVID-19) in children. Turk J Med Sci. 2020:592-603.

Pambuccian SE. The COVID-19 pandemic: implications for the cytology laboratory. J Am Soc Cytopathol. 2020;9(3):202-11.

Rico-Mesa JS, White A, Anderson AS. Outcomes in Patients with COVID-19 Infection Taking ACEI/ARB. Curr Cardiol Rep. 2020;14;22(5):31.

Ozma MA, Maroufi P, Khodadadi E, Köse Ş, Esposito I, Ganbarov K, et al. Clinical manifestation, diagnosis, prevention and control of SARS-CoV-2 (COVID-19) during the outbreak period. Infez Med. 2020;1;28(2):153-65.

Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 2020;63(4):119-24.

Shahid Z, Kalayanamitra R, McClafferty B, Kepko D, Ramgobin D, Patel R, et al. COVID‐19 and older adults: what we know. J Am Geriatr Soc. 2020 May;68(5):926-9.

Hasan A, Mehmood N, Fergie J. Coronavirus Disease (COVID-19) and Pediatric Patients: A Review of Epidemiology, Symptomatology, Laboratory and Imaging Results to Guide the Development of a Management Algorithm. Cureus. 2020;12(3):e7485.

Choi SH, Kim HW, Kang JM, Kim DH, Cho EY. Epidemiology and clinical features of coronavirus disease 2019 in children. Clin Exp Pediatr. 2020;63(4):125-32.

Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience. 2020;42(2):505-14.

Hufert F, Spiegel M. Coronavirus: from common cold to severe pulmonary failure. Monatsschr Kinderheilkd. 2020;1:1-11.

Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. 2020;14:104833.

World Health Organization. Coronavirus disease 2019, available at Accessed April 2020.

Yan Y, Chang L, Wang L. Laboratory testing of SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 (2019‐nCoV): Current status, challenges, and countermeasures. Rev Med Virol. 2020 May;30(3):e2106.

Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA. Hematological findings and complications of COVID‐19. Am J Hematol. 2020 Apr 13.

Raptis CA, Hammer MM, Short RG, Shah A, Bhalla S, Bierhals AJ, et al. Chest CT and Coronavirus Disease (COVID-19): A Critical Review of the Literature to Date. AJR Am J Roentgenol. 2020 Mar 26:1-4.

Yang W, Sirajuddin A, Zhang X, Liu G, Teng Z, Zhao S. et al. The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur Radiol. 2020 Apr 15:1-9.

Bao C, Liu X, Zhang H, Li Y, Liu J. Coronavirus Disease 2019 (COVID-19) CT Findings: A Systematic Review and Meta-analysis. J Am Coll Radiol. 2020 Mar 25. pii: S1546-1440(20)30262-3.

Johnson-Wimbley TD, Graham DY. Diagnosis and management of iron deficiency anemia in the 21st century. Therap Adv Gastroenterol.2011;4(3):177-84.

Assessing the Iron Status of Populations. 2nd ed. Geneva, Switzerland: World Health Organization; 2007.

Beutler E, Waalen J. The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood. 2006;107(5):1747-50.

Jimenez K, Kulnigg-Dabsch S, Gasche C. Management of Iron Deficiency Anemia. Gastroenterol Hepatol (NY). 2015;11(4):241-50.

Worldwide Prevalence of Anaemia 1993–2005. Bruno de Benoist World Health Organization Geneva, Switzerland.

Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained. Blood. 2004;104(8):2263-8.

Short MW. Iron Deficiency Anemia: Evaluation and Management. Am Fam Physician. 2013; 15;87(2):98-104.

Klip IT, Comin-Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W, et al. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J. 2013;165(4):575‐82.

Hemauer S, Kingeter AJ, Han X, Shotwell MS, Pandharipande PP, Weavind LM. Daily Lowest Hemoglobin and Risk of Organ Dysfunctions in Critically Ill Patients. Crit Care Med. 2017;45(5):479-84.

Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis. 2020 Apr 17. pii: ciaa449.

Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020 Apr 10:102452.

McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537.

Ulhaq ZS, Soraya GV. Interleukin-6 as a potential biomarker of COVID-19 progression. Médecine et Maladies Infectieuses. 2020 Apr 4.

Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrobial Agents. 2020 Mar 29:105954.

Henry BM, De Oliveira MH, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. (CCLM). 2020 Jun 25;58(7):1021-8.

Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108(9):3204-9.

McCranor BJ, Langdon JM, Prince OD, Femnou LK, Berger AE, Cheadle C. Investigation of the role of interleukin-6 and hepcidin antimicrobial peptide in the development of anemia with age. Haematol. 2013;98(10):1633-40.

Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020;105(2):260-72.

Yacoub MF, Ferwiz HF, Said F. Effect of Interleukin and Hepcidin in Anemia of Chronic Diseases. Anemia. 2020;6:1-5.

Rodriguez R, Jung CL, Gabayan V, Deng JC, Ganz T, Nemeth E, et al. Hepcidin Induction by Pathogens and Pathogen-Derived Molecules Is Strongly Dependent on Interleukin-6. Infect Immun. 2014;82(2):745-52.

Leermakers PA, Remels AHV, Zonneveld MI, Rouschop KMA, Schols AMWJ, Gosker HR. Iron deficiency-induced loss of skeletal muscle mitochondrial proteins and respiratory capacity; the role of mitophagy and secretion of mitochondria-containing vesicles. FASEB J. 2020;34:6703-17.

Melenovsky V, Hlavata K, Sedivy P, Dezortova M, Borlaug BA, Petrak J, et al. Skeletal Muscle Abnormalities and Iron Deficiency in Chronic Heart Failure. Heart Failure. 2018;11: e004800.

Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail. 2016;18(7):762-73.

Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105-22.

Cherayil BJ. The role of iron in the immune response to bacterial infection. Immunol Res. 2011;50(1):1-9.

Schaible UE, Kaufmann SHE. Iron and microbial infection. Nature Reviews Microbiol. 2004;2:946-53.

Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol. 2009;46:387-93.

Eskeland B, Baerheim A, Ulvik R, Hunskaar S. Influence of mild infections on iron status parameters in women of reproductive age. J Pri Health Care. 2009;20:50-6.

Dagg JH, Glodberg A, Anderson JR, Beck JS, Gray KG. Autoimmunity in Iron-deficiency Anaemia. Br Med J. 1964;1(5394):1349-50.

Hershko C, Hoffbrand AV, Keret D, Souroujon M, Maschler I, Monselise Y, et al. A. Role of Autoimmune Gastritis, Helicobacter Pylori and Celiac Disease in Refractory or Unexplained Iron Deficiency Anemia. Haematologica. 2005;90:585-95.

Zivadinov R, Weinstock-Guttman B, Pirko I. Iron deposition and inflammation in multiple sclerosis. Which one comes first?. BMc Neurosci. 2011 Dec;12(1):60.

Ketonen L, Kieburtz K, Kazee AM, Tuite M, Putaminal Iron Deposition in HIV Infection. J Neuro-AIDS. 1996;1(2)33-40.

Hale A, Tradewell GM. NCLEX-PN Notes: course review and exam prep. FA Davis Company. 2010.