Evaluation of retinal nerve fibre layer, optic nerve head, and macular ganglion cell analysis measurements for early glaucoma detection using spectral domain optical coherence tomography

Authors

  • Rahul Bhardwaj Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India
  • Sandeep Sharma Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India
  • Rachana Gaur Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India
  • Sindhuja Singh Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India
  • Prakhar Chaudhary Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India
  • Monika Sain Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India
  • Sayed Abbas Ali Zaidi Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India
  • Gayasuddin Khan Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

DOI:

https://doi.org/10.18203/2320-6012.ijrms20205841

Keywords:

Macular ganglion cell analysis (mGCA), Retinal nerve fibre layer, Spectral domain optical coherence tomography

Abstract

Background: Glaucoma is the leading cause of irreversible blindness worldwide. It is very important to diagnose glaucoma in early stages so that timely management can be done. Spectral domain optical coherence tomography (SD-OCT), is a newer device which helps to diagnose glaucoma early. The aim of our study was to evaluate the RNFL, ONH, and mGCA (GCL+IPL) measurements for early glaucoma detection using spectral domain optical coherence tomography (SD-OCT).

Methods: Total 30, POAG (primary open angle glaucoma) suspects were compared with 30 normal controls. The Cirrus HD-OCT optic disc cube 200 × 200 protocol was used to measure ONH, RNFL and macular parameters.

Results: The average cpRNFL thickness of all quadrants was significantly lower in POAG suspects, (84.13±7.42 μm versus 103.85±8.95 μm, p<0.001). The superior GCL+IPL thickness of POAG suspects and controls was 75.75±2.60 μm and 80.05±1.74 μm, respectively, (p<0.001). The inferior GCL+IPL thickness of POAG suspects and controls was 75.98±2.59 μm and 80.00±1.79 μm, respectively, (p<0.001).

Conclusions: The SD-OCT is an important device to diagnose POAG suspects, early. The GCA measurements and average RNFL (especially superior and inferior) measurements, both are equally good to discriminate between glaucoma suspects and normal controls.

Author Biographies

Rahul Bhardwaj, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Assistant Professor

Ophthalmology

Sandeep Sharma, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Associate Professor

Ophthalmology

Rachana Gaur, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Consultant

General Medicine

Sindhuja Singh, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Consultant

Ophthalmology

Prakhar Chaudhary, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Consultant

Ophthalmology

Monika Sain, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Senior Resident

Ophthalmology

Sayed Abbas Ali Zaidi, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Comprehensive Ophthalmology Fellow

Ophthalmology

Gayasuddin Khan, Department of Ophthalmology, Regional Institute of Ophthalmology, Sitapur, Uttar Pradesh, India

Optometrist

Ophthalmology

References

Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614-8.

Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000;41:741-8.

Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5-25.

Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J Glaucoma. 2015;24:55-63.

Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci. 2015;56(8):4857-64.

Ng DS, Gupta P, Tham YC, Peck CF, Wong TY, Ikram MK, et al. Repeatability of perimacular ganglion cell complex analysis with spectral-domain optical coherence tomography. J Ophthalmol. 2015;2015:605940.

Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998;105:224-31.

Asrani S, Challa P, Herndon L, Lee P, Stinnett S, Allingham RR. Correlation among retinal thickness, optic disc, and visual field in glaucoma patients and suspects: a pilot study. J Glaucoma. 2003;12:119-28.

Oli A, Joshi D. Can ganglion cell complex assessment on cirrus HD OCT aid in detection of early glaucoma. Saudi J Ophthalmol. 2015;29:201-4.

Mathers K, Rosdahl JA, Asrani S. Correlation of macular thickness with visual fields in glaucoma patients and suspects. J Glaucoma. 2014;23:98-104.

Zhang C, Tatham AJ, Weinreb RN, Zangwill LM, Yang Z, Zhang JZ, et al. Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. Ophthalmology. 2014;121:2371-9.

Araie M, Saito H, Tomidokoro A, Murata H, Iwase A. Relationship between macular inner retinal layer thickness and corresponding retinal sensitivity in normal eyes. Invest Ophthalmol Vis Sci. 2014;55:7199-205.

Asrani S, Rosdahl JA, Allingham RR. Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness. Arch Ophthalmol. 2011;129:1205-11.

Um TW, Sung KR, Wollstein G, Yun SC, Na JH, Schuman JS. Asymmetry in hemifield macular thickness as an early indicator of glaucomatous change. Invest Ophthalmol Vis Sci. 2012;53:1139-44.

Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119:1151-8.

Hwang YH, Ahn SI, Ko SJ. Diagnostic ability of macular ganglion cell asymmetry for glaucoma. Clin Experiment Ophthalmol. 2015;43:720-6.

Jeong JS, Kang MG, Kim CY, Kim NR. Pattern of macular ganglion cell-inne plexiform layer defect generated by spectral-domain OCT in glaucoma pa tients and normal subjects. J Glaucoma. 2015;24:583-90.

Kim YK, Yoo BW, Kim HC, Park KH. Automated detection of hemifield differ ence across horizontal raphe on ganglion cell-inner plexiform layer thicknes map. Ophthalmology. 2015;122:2252-60.

Kim KE, Park KH, Jeoung JW, Kim SH, Kim DM. Severity-dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open-angle glaucoma. Acta Ophthalmol. 2014;92:650-6.

Morooka S, Hangai M, Nukada M, Nakano N, Takayama K, Kimura Y, et al. Wid three-dimensional macular ganglion cell complex imaging with spectral domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:4805-12.

Kita Y, Kita R, Takeyama A, Takagi S, Nishimura C, Tomita G. Ability of optical coherence tomography-determined ganglion cell complex thickness to total retinal thickness ratio to diagnose glaucoma. J Glaucoma. 2013;22:757-62.

Na JH, Lee K, Lee JR, Baek S, Yoo SJ, Kook MS. Detection of macular ganglion cell loss in preperimetricglaucoma patients with localized retinal nerve fibre defects by spectral-domain optical coherence tomography. Clin Exp Ophthalmol. 2013;41(9):870-80.

Lisboa R, Paranhos A Jr, Weinreb RN, Zangwill LM, Leite MT, Medeiros FA. Comparison of differentspectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54(5):3417-25.

Rao HL, Addepalli UK, Chaudhary S, Kumbar T, Senthil S, Choudhari NS, et al. Ability of different scanning protocols of spectral domainoptical coherence tomography to diagnose preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54(12):7252-7.

Hodapp E, Parrish RK, Anderson DR. Clinical Decisions in Glaucoma. 1st ed. US: St Louis Mosby; 1993.

Gunvant P, Porsia L, Watkins RJ, Bayliss-Brown H, Broadway DC. Relationships between central corneal thickness and optic disc topography in eyes with glaucoma, suspicion of glaucoma, or ocular hypertension. Clin Ophthalmol. 2008;2(3):591.

Chang RT, Singh K. Glaucoma suspect: Diagnosis and management. Asia Pac J Ophthalmol. 2016;5:32-7.

Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701-13.

Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714-20.

Kerrigan-Baumrind LA, Quigley HA, Pease ME. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41(3):741-8.

Zhang X, Parrish II RK, Greenfield DS, Francis BA, Varma R, Schuman JS, et al. Predictive factors for the rate of visual field progression in the advanced imaging for glaucoma study. Am J Ophthalmol. 2019;202:62-71.

Karti O, Yuksel B, Uzunel UD, Karahan E, Zengin MO, Kusbeci T, et al. The assessment of opticalcoherence tomographic parameters in subjects with a positive family history of glaucoma. Clin Exp Optom. 2017;100:663-7.

Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116(12):2305-14.

Khanal S, Davey PG, Racette L, Thapa M. Comparison of retinal nerve fiber layer and macular thicknessfor discriminating primary open-angle glaucoma and normal-tension glaucoma using optical coherence tomography. Clin Exp Optom. 2016;99(4):373-81.

Sung MS, Yoon JH, Park SW. Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using cirrus HD-OCT in preperimetric and early glaucoma. J Glaucoma. 2014;23(8):144-51.

Kim MJ, Jeoung JW, Park KH, Choi YJ, Kim DM. Topographic profiles of retinal nerve fiber layer defects affect the diagnostic performance of macular scans in preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2014;55(4):2079-87.

Downloads

Published

2020-12-28

How to Cite

Bhardwaj, R., Sharma, S., Gaur, R., Singh, S., Chaudhary, P., Sain, M., Zaidi, S. A. A., & Khan, G. (2020). Evaluation of retinal nerve fibre layer, optic nerve head, and macular ganglion cell analysis measurements for early glaucoma detection using spectral domain optical coherence tomography. International Journal of Research in Medical Sciences, 9(1), 186–191. https://doi.org/10.18203/2320-6012.ijrms20205841

Issue

Section

Original Research Articles